2006年07月29日

【回答290】タイルで敷きつめられるかもしれない問題

問題編は一息ついたときの小ネタ【問題290】を参照ください。

問題編のところでグーグルアースのことについて書いてましたが、昨日タモリ倶楽部を観たら、まさしくこのグーグルアースで遊ぼうというテーマでやってました。バージョンアップしてからのグーグルアース、あの操作性はすごいですね。


【回答290】
答えは必ず敷きつめられる、です。
ではこれをどう説明するかですが、うまい方法があります。

下の図のように、盤を「仕切って」いきましょう。盤を太い黒線で切ってしまうと考えます。チェス盤は正方形8×8の大きさなので、太線をまたがずに(一筆書きのように)元の場所に戻ってこれるように「切る」ことができます。
このとき、元々の模様が市松模様なので、一筆書きのルートをたどると必ず白と黒(灰色)が交互に出てきます。

さて、これを一筆書きと考えると、2つの駒が隣り合わせで置かれていなかった場合、AからBのルート(もちろん逆もあります)と、CからDのルートの2つで全てのマスを通る(=全てのマスにタイルを置く)ことになります。

ところで、黒に置かれている駒に隣接するマス(スタートするマスA)は必ず白で、白に置かれている駒に隣接するマス(ゴールするマスB)は必ず黒なので、このルートには必ずタイルが置けます(白黒白黒・・・の順番で並んでいるためです)。
CからDのルートでも同じことがいえます(このときは黒から始まって白で終わります)。
もちろん、2つの駒が隣り合わせで置かれていても、ルートが一つになるだけの話で、同じことがいえます。

ということで、どこに駒を置かれてもこの長方形のタイルで敷きつめられるのでした。

回答290


友達にすすめる
posted by fakerholic at 11:27| Comment(41) | TrackBack(9) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年07月27日

【回答289】はじめての電車

問題編は一息ついたときの小ネタ【問題289】を参照ください。

【回答289】
たいぞう君が二回目に電車に乗ったのは、つり革に手が届くくらい成長してからだったから、でした。


つり革を持って乗る、とか、銀河鉄道に乗っていた、とか面白いです。乗っていた電車が鉄橋から落ちて自由落下中につり革に手が届いた、とか考えてしまいました。(ちょっとブラックです)

黒ヒゲの話、あの商品自体いろんな大きさのものがあるようで、電池で喋ったりするのもあるようですが(イテテテ、おい、ヤメロヨ、とか言ったりします)、私が持っていて、この刺し方が通用する商品は高さ20cmくらいの多分最もスタンダードなやつです。

友達にすすめる
posted by fakerholic at 01:02| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年07月25日

【回答288】希望の橋

問題編は一息ついたときの小ネタ【問題288】を参照ください。

【回答288】
こんな感じの回答があります。
タイゾー君は警備員が検閲所に入った瞬間、急いで橋を渡っていきます。2分ほど走ったら、今度は反対側に(A国側に向かって)走り出します。
そう、3分後に出てきた警備員は、「B国からA国に入国しようとしている」タイゾー君を見つけて、こう言うのでした。「ほら、入国はできないから自分の国に戻りなさい」
かくしてタイゾー君はB国に「強制的に」入国できたのでした。




橋を渡る、というネタでこんな問題もあります。
【問題】
タイゾー君は2つの純金製のボールを盗んだかどで、ある組織に追われていました。目の前にはつり橋があり、これを渡ると逃げ延びることができそうですが、この橋の最大荷重は75kgで、少しでも超えたら重さに耐え切れず落ちてしまいます。
さて、タイゾー君の体重は68kg、純金製のボールは1個5kgあります。このボールを2つとも持って無事橋を渡るにはどうしたらいいかわかりますか。


そんなに難しくないので、特に回答も入れずにおきます。

友達にすすめる
posted by fakerholic at 00:59| Comment(8) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

【回答287】矢印四つで

問題編は一息ついたときの小ネタ【問題287】を参照ください。

なんだか久しぶりです。すいません。


【回答287】
普通に4つ正方形になるように組み合わせれば、白い部分が放射状の矢印になってます。・・・というのが回答だったのですが、あの問題文だと、ひし形で組み合わせればいいじゃん、ともとれてしまいますね。。
そのうちこっそり問題文を修正してるかもしれません。。

回答287


ところで、いつの間にか管理画面が変更になったseesaaブログ(ココ)ですが、なんか使いづらいです。

友達にすすめる
posted by fakerholic at 00:37| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月28日

【回答286】無能でワイロにまみれた政治家と

問題編は一息ついたときの小ネタ【問題286】を参照ください。


【回答286】
この問題は、一つ一つの条件にとらわれてしまうと、段々何が何だかわからなくなってしまうので、全体でどんな条件があるのか出してしまうとわかりやすくなります。

出てくる政治家の特徴は次の対比で書かれています。

潔白  ←→  ワイロにまみれている
男性  ←→  女性
有能  ←→  無能

ということは全ての政治家は次の8通り(2の3乗)に区分され、重複はないことになります。

1.有能で、潔白な、男性
2.有能で、潔白な、女性
3.有能で、ワイロにまみれている、男性
4.有能で、ワイロにまみれている、女性
5.無能で、潔白な、男性
6.無能で、潔白な、女性
7.無能で、ワイロにまみれている、男性
8.無能で、ワイロにまみれている、女性


それぞれのパターンで調べてみると、
1.文中からそのまま、1人いることがわかります。

2.「潔白な政治家のうち、4人は有能」なので、1.の1人を引いた3人となります。

3.「男性のうち3人は有能」なので、1.の1人を引いた2人です。

4.「13人は有能」ということは、1.から3.までで6人いるので、7人いることになります。

5.「潔白な政治家のうち、・・・男性は5人」なので、1.の1人を引いた4人になります。

6.「14人の政治家は潔白」なので、1.2.5.の合計8人を引いた6人です。

7.「12人は男性」なので、1.3.5.の合計7人を引いた5人となります。

8.文中からこの手の人がいなかったことがわかります。



これで、全てのパターンの人数がわかりました。これらを全て足すと、28人となります。この日議事堂には28人の政治家がいたのでした。

さすがに無能でワイロにまみれた政治家にはお世話になりたくないです。



時間が経ちすぎてて申し訳なかったりしますが、鬼さまのコメント、あれは私宛のものだったのでしょうか。ハンドルネームでたまに笑ってしまうのがあって、以前、「甘えん坊将軍」に笑ってしまいました。誰か「鬼平ハンカチ落とし」とかやらないでしょうか:-)


友達にすすめる
posted by fakerholic at 01:31| Comment(3) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月19日

【回答285】仲の悪い隣人

問題編は一息ついたときの小ネタ【問題285】を参照ください。

この問題は結構有名なので、お分かりの方は多いと思いますが、回答をテキストだけで答えるというのは至難の業ですね:-)


【回答285】
次の図のとおりです。

回答285

それにしても、線の引き方が稚拙ですいません。

友達にすすめる
posted by fakerholic at 00:42| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月15日

【回答284】六ツ目が通る

問題編は一息ついたときの小ネタ【問題284】を参照ください。


【回答284】
回答は、双子を妊娠している妊婦、です。


よく似た問題でこんなのもあります。

【問題】
体に心臓を二つもっている人はどんな人かわかりますか。

最高六個持ってる(持ってた)人がいますね。目だと12個です。それにしても妊娠する(命ができる)というのは不思議なものです。


ところで私自身リアルタイムでは観てないのですが、初代ウルトラマンに出てきた怪獣でダダというのがいて、これが確か3つの顔を持ってる怪獣でした。そんなコメントもあるかも、と思っていましたがさすがに話が古すぎました(でもあのころの怪獣って造形が良くできてて、結構好きです)。


友達にすすめる
posted by fakerholic at 23:29| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月14日

【回答283】余計な死体

問題編は一息ついたときの小ネタ【問題283】を参照ください。

でもなあ、今日のブラジルVSクロアチア戦でクロアチアががんばっちゃって勝ったりでもしたら、どうしよう。そろそろ真面目に仕事しようかな。


【回答283】
玉突きとなった車がどんな車だったのか、というのがポイントでした。回答は、事故を起こした車の中に死体を運んでいた霊柩車がいた、でした。

瀕死のケガ人を運んでいた救急車がいて、ケガ人が息を引き取ったあとに事故に巻き込まれた、というのもありそうです。


サッカー日本代表にすすめる
posted by fakerholic at 01:17| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

【回答282】奇妙なパーティ

問題編は一息ついたときの小ネタ【問題282】を参照ください。

気をとりなおしてクロアチア戦です。

【回答282】
このパーティとはタイゾー君が喪主を務める葬式でした。葬式は故人の知り合いが参列するので、タイゾー君にとっても参列者にとってもほとんどが初顔合わせとなったのでした。


香典泥棒の心理がわかる気がします。
と、お見合いパーティー、というコメントがあるかも、と思ったりしていましたがさすがになかったですね。

友達にすすめる
posted by fakerholic at 01:05| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月12日

【回答281】犠牲者は誰?

問題編は一息ついたときの小ネタ【問題281】を参照ください。

明日のサッカーVSオーストラリア戦、楽しみです。朝から仕事にならないような気が。

【回答281】
誰かが食料になる、と決まった段階で既に諦めていた人が一人いました。なぜ諦めなければいけなかったのか。そう、その一人はベジタリアンでした。



ついでにジョークをひとつ。

無人島で一人が犠牲になって食糧とならねばならない状況に、コイズミ君はこう叫びました。
「私は日本の人々を幸せにすることができる」
ブッシュ君はこう叫びました。
「私はアメリカの人々を幸せにすることができる」
プーチン君はそんなブッシュを食べてしまってこう言いました。
「私は世界の人々を幸せにすることができた」

友達にすすめる
posted by fakerholic at 00:57| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年06月11日

【回答280】4本のケーブル

問題編は一息ついたときの小ネタ【問題280】を参照ください。

なんだか久しぶりですいません。

【回答280】
電池と電球は電気が通っているかどうかを判定するために使うので、いわゆるテスター代わりです。この問題は次のようにやると1往復でできます。

地上にある(出ている)ケーブルを便宜上1から4とおきます。このままだと電池と電球は使いようがないので、ケーブルを結んで屋上で使うことを考えます。

地上:1と2のケーブルを結んで屋上に上がります。

屋上:電池と電球を使って、どの2本が電気が通じているかを調べます。
地上で2本のケーブルが結ばれているので、2本のケーブルをつないだときだけ電球が光るはずです。ここで電球が光った屋上のケーブル2本をAB、光らなかった2本をCDとおきます。(1、2のケーブルはAかBのどちらかです。)

ここで、電球の光ったケーブル1本と光らなかったケーブル1本を結んで地上に降ります(例えばBとCを結びます)。


地上:1、2のどちらかが屋上で他のケーブルと結ばれているのは間違いないので、このどちらかを使って電気の点く組合せを調べます。3か4のケーブルで電球が点灯するはずです。
仮に1と3で電球が光ったとすると、屋上ではこれがBとCなので次の組合せが考えられます。

1がBで3がC、もしくは、1がCで3がB

ところで屋上の調査で「1、2のケーブルはAかBのどちらか」であることがわかっているので、「1がCで3がB」とうことはありえません。

なので、地上のケーブル1、2、3、4は屋上ではそれぞれB、A、C、Dとわかるのでした。



ところで、マーティン・ガードナーはこういった問題で、11本のケーブル、という問題を出しています。実は11本でも1往復でわかってしまいます。どうやるか、わかりますか:-)

友達にすすめる
posted by fakerholic at 23:04| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年05月24日

【回答279】ペンタゴンのバスルーム

問題編は一息ついたときの小ネタ【問題279】を参照ください。

思えば早いものでココを始めて1年経ってしまいました。あの頃は暇で良かったと懐かしさをかみしめる今日この頃です。次の土日あたり、何か記念企画でもやります。(多分)


【回答279】
やっぱり軍関係だから24時間体制で夜勤とかあったりして、それでバスルームは昼間働く人用と夜勤用の2つあった?

実は奴隷解放宣言(1863年)の発布以降、米での黒人差別はなくなったと思いきや、実際は差別が法制化されていきました。1940年代のアメリカは黒人差別が当たり前に行われていた時期で、当時のバージニア州の法律ではこのように規制されていたのでした。「黒人と白人は別のバスルームを使うこと」


コメントでジム・クロウ法とありましたが、これ、よくご存知ですね。ところで男用、女用、おかま用・・・ありとあらゆる種類のバスルームがあったというのは笑ってしまいました。オカマといえば、おすぎとピーコって双子でオカマでいい歳ですが、そういうのって結構珍しいと思うんですが、どうでしょう。


友達にすすめる
posted by fakerholic at 01:20| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年05月18日

【回答278】ウチの子、どっち?

問題編は一息ついたときの小ネタ【問題278】を参照ください。

【回答278】
用意していた回答は、運転手はタイゾー君の母親だった、というものでした。

バリエーションとしては、息子が交通事故に遭って運ばれた先の救急病院で、医者が「この子はウチの子だからとても手術できない」と言った、とか、飛行機のパイロット、バスの運転手バージョンというのも見かけます。

ところで、この問題の内容からいくと、祖父、父、息子という三世代の話等としても読めてしまえそうで、コメント拝見してなるほどと思ってしまいました。

友達にすすめる
posted by fakerholic at 00:52| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年05月15日

【回答277】犯罪者タイゾー君控訴する

問題編は一息ついたときの小ネタ【問題277】を参照ください。

【回答277】
アメリカで複数の凶悪犯罪を犯したタイゾー君は、一審で例えば禁固1000年の刑を受けていました。二審ではこれが大幅に減刑されて、禁固500年と宣告されたのでした。


この話、実話であって、2002年のテキサス州で禁固5005年(!)を宣告された男がいました。この宣告はちょっとやりすぎだと思った判事は、自由裁量権を行使してこう告げたのでした。「この受刑者の刑を4004年短縮する」

それにしても人を裁くというのは難しそうです。人の寿命は決まっているので、寿命分を超えた禁固刑がどんなに加算されても、罪を抑制する効果はないと思われます。極刑(死刑)にしたところで、どうせオレは死刑なんだから・・となりかねません。


ところで今日デパートにいったら、さすがにムシキングや恐竜キングの列はまばらでしたが、ラブ&ベリーの列は長蛇になってました。セガのあてた二匹目のドジョウは大きかったということでしょうか。
NAO.様>最近どうですか。そちらでもまだラブ&ベリーは熱いですか?

友達にすすめる
posted by fakerholic at 01:36| Comment(0) | TrackBack(1) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年05月08日

【回答276】哲学者と時計

問題編は一息ついたときの小ネタ【問題276】を参照ください。

【回答276】
カントは家を出るときに時計を動かしてこのときの時間を覚えておきました。次に知人の家についた時点で知人の時計を見て、今の時間を知ります。更に1時間後知人宅を出るときに時計を見、家に着いたら家の時計の時間を見たのでした。

自宅の時計を仮に6時ちょうどから動かして、帰宅時の時間が9時だったとしたら、知人宅にいた時間は1時間なので(正確には知人宅を出た時間から知人宅に入った時間を引いて)往復に2時間かかったことになります。
2時間の半分の時間が片道にかかっていると考えて、知人宅からかかった時間は1時間、知人宅を出た時間に1時間を足した時間にカントは時計をあわせたのでした。


とまあ、こういう回答ですが、カントと知人の家の間が急な坂道だったらどうするんだ、という話はありそうです。
実は携帯は持っていた、とか、家についたら電話が開通していて117で聞いたとかそんなのも面白そうです。


友達にすすめる
posted by fakerholic at 01:18| Comment(5) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

【回答275】人口を減らす効果的な方法

問題編は一息ついたときの小ネタ【問題275】を参照ください。

【回答275】
避妊具、というのはもちろんありそうだ、と思いましたが、それは使う側の意志も必要なので、インド政府はそんなんじゃ効果がないと思っていたのかもしれません。
実際に値段を下げるよう奨励したのはテレビでした。(ラジオやオーディオ機器だとかえってムードが高まって逆効果だったりしそうです)テレビだと目も耳も独占されるので効果ありと考えたようです。

で、その結果どうなったかというと、実は私はこの報道だけ知ってて、その後の話は知りません。音沙汰なさそうなところをみると・・・?


友達にすすめる
posted by fakerholic at 00:48| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年05月07日

【回答274】天秤のパズル再び

問題編は一息ついたときの小ネタ【問題274】を参照ください。

【回答274】
5個のボールを2個ずつ比べられるということは、最高10回は比較できるということです。(これ、高校あたりの数学で出てくる「順列組合せ」の5C2で出せます。5×4÷(2×1)です)これを7回でやれる、と考えた人は暇なのか天才なのか。

まず5個のボールをそれぞれABCDEとおきます。

1回目:AとBを比べます。ここではAよりBが重かったとします。(A<B)

2回目:CとDを比べます。ここではCよりDが重かったとします。(C<D)

3回目:BとDを比べます。ここでBよりDが重かったとします。(B<D)ここまででいえるのは、次のことです。

A<B<D、C<D

4回目:今度はEとBを天秤に乗せます。ここでBよりEが重かった場合(B<E)、これまででBより重いのはDなので、5回目としてDとEを比べます。

このとき、E<Dであれば全てのボールが出てきて最も重いのがDなのでDが一番重いことがわかります(A<B<D、B<E<D、C<D)。あとは6回目、7回目でBとC、AとCと比べれば全体が出ます。
同じくD<Eの場合、A<B<D<E、C<Dとなるので、Eが一番重いことがわかり、6回目、7回目でAとC、BとCと天秤に乗せればOKです。


4回目でEよりBが重かった場合(E<B)、今度はBより軽いのがAとEなので、最も軽いボールを探すため、5回目でAとEを比べます。

A<Eのときは、A<E<B<D、C<Dとなるので、6回目・7回目はCとE、CとBを比べることで出ますし、E<Aのときは、E<A<B<D、C<Dなので、同じく6回目、7回目でAとC、BとCを比べて全体を出すことができます。



元々はヒューゴ・ステインハウスという人がこれを思いついた(考えた)らしく、最短の回数にはどうも法則があるようです。以下はボールが10個までの場合の最短の回数です。


ボールの数    最短の回数
1        0
2        1
3        3
4        5
5        7
6        10
7        13
8        16
9        19
10       22

この話、では実社会にどんなメリットあるのか、というと、うーん、ちょっと難しそうですが、コンピュータプログラムで大きさの順位を計るのに、総当りで当たらせるかこんな風に工夫するかでちょっとは違ってくるかもしれません。ただ、こんな風にプログラムする方が大変そうです。

最近だとK1とかPRIDEで総合格闘技最強の男を決める、なんてやってますが、本当に最強の男を決めるんだったら総当り戦をやった方がよくて、それでも試合数が多すぎるんだよなあ、というときにこんな感じで試合数を減らすとかありそうだ、とか思いましたが、そこはそれ、興行主側の思惑もあるわけで、やっぱりいい使い道が思いつかないのでした。


久しぶりに友達にすすめる
posted by fakerholic at 23:26| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年04月18日

【回答273】方位の誤植

問題編は一息ついたときの小ネタ【問題273】を参照ください。

【回答273】
この看板、よく見ると東と西の位置が通常とは逆になってます。これが誤植でないとするとどう使えばいいか。実は見上げるところに貼り付けて使うものだったのでした。
例えば天井に書いてあって見上げて方角を知る場合、東と西は反対向きでちょうど正常な方角を示します。プラネラリウムというコメントもいただきましたが、同じような考えですね。

友達にすすめる
posted by fakerholic at 00:34| Comment(1) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年04月13日

【回答272】ドイツのスパイはテレパシーで会話する

問題編は一息ついたときの小ネタ【問題272】を参照ください。

【回答272】
この話、私自身何かの映画で見たような記憶があります。食事を摂るときには外套(コート)や帽子は外すのがマナーで、レストランの入口には帽子掛けやコート掛けがありました。
ドイツのスパイ二人は全く同じ帽子をかぶってそれぞれ勝手にレストランに入り、出るときに自分がかぶってきたのではない、全く同型の帽子をとって出て行きました。そう、その帽子の中にメッセージを入れていた、という事でした。


回答編の方も遅れがちですいません。入院したら一気に仕上げられるんですけど・・・

友達にすすめる
posted by fakerholic at 00:11| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

2006年04月07日

【回答271】20個の点から正方形

問題編は一息ついたときの小ネタ【問題271】を参照ください。

この前の問題編で黒ヒゲ危機一髪のネタを書いてましたが、ウチにあるこのおもちゃを良く見てみたら、正式な商品名は「危機一髪」ではなく、「危機一発」なんですね。似ても似つかないのにこんなものまで007の影響を受けていたとは・・・


【回答271】
正方形は全部で21個できます。

まずは一辺が1のもので9個、√2のもので4個、

回答271−1

次に2√2のもので4個、√13のもので2個、

回答271−2

最後に√5のもので2個(これ、見つけづらかったのでは?)

回答271−3


友達にすすめる
posted by fakerholic at 00:58| Comment(0) | TrackBack(0) | 頭の体操クイズネタ回答集 | このブログの読者になる | 更新情報をチェックする

広告


この広告は60日以上更新がないブログに表示がされております。

以下のいずれかの方法で非表示にすることが可能です。

・記事の投稿、編集をおこなう
・マイブログの【設定】 > 【広告設定】 より、「60日間更新が無い場合」 の 「広告を表示しない」にチェックを入れて保存する。


×

この広告は1年以上新しい記事の投稿がないブログに表示されております。